第 4 部分阅读
其余所以为实者,无盈数。两盈以少减多,余为法。齐之八十者,是十假令;而凡盈三十者,是十,以三之;齐之二十七者,是三假令;而凡盈三十者,是三,以十之。今假令两盈共十、三,以三减十,余七,为一实。故令以三减十,余七为法。所出率以少减多,余谓之设差。因设差为少设,则两盈之差是为定实。故以少设约法得人数,约实即得金数。〕其一术曰:置所出率,以少减多,余为法。两盈、两不足以少减多,余为实。
实如法而一,得人数。以所出率乘之,减盈、增不足,即物价。
〔“置所出率,以少减多”,得一人之差。两盈、两不足相减,为众人之差。
故以一人之差除之,得人数。以所出率乘之,减盈、增不足,即物价。〕今有共买犬,人出五,不足九十;人出五十,适足。问人数、犬价各几何?答曰:二人。犬价一百。
今有共买豕,人出一百,盈一百;人出九十,适足。问人数、豕价各几何?答曰:一十人。豕价九百。
术曰:以盈及不足之数为实。置所出率,以少减多,余为法。实如法得一人。
其求物价者,以适足乘人数,得物价。
〔此术意谓以所出率,以少减多者,余是一人不足之差。不足数为众人之差。
以一人差约之,故得人之数也。以盈及不足数为实者,数单见,即众人差,故以为实。所出率以少减多,即一人差,故以为法。以除众人差,得人数。以适足乘人数,即得物价也。〕今有米在十斗桶中,不知其数。满中添粟而舂之,得米七斗。问故米几何?答曰:二斗五升。
术曰:以盈不足术求之。假令故米二斗,不足二升;令之三斗,有余二升。
〔按:桶受一斛,若使故米二斗,须添粟八斗以满之。八斗得粝米四斗八升,课于七斗,是为不足二升。若使故米三斗,须添粟七斗以满之。七斗得粝米四斗二升,课于七斗,是为有余二升。以盈不足维乘假令之数者,欲为齐同之意。为齐同者,齐其假令,同其盈朒。通计齐即不盈不朒之正数,故可以并之为实,并盈、不足为法。实如法,即得故米斗数,乃不盈不朒之正数也。〕今有垣高九尺。瓜生其上,蔓日长七寸;瓠生其下,蔓日长一尺。问几何日相逢?瓜、瓠各长几何?答曰:五日十七分日之五。瓜长三尺七寸一十七分寸之一。瓠长五尺二寸一十七分寸之一十六。
术曰:假令五日,不足五寸;令之六日,有余一尺二寸。
〔按:“假令五日,不足五寸”者,瓜生五日,下垂蔓三尺五寸;瓠生五日,上延蔓五尺;课于九尺之垣,是为不足五寸。“令之六日,有余一尺二寸”者,若使瓜生六日,下垂蔓四尺二寸;瓠生六日,上延蔓六尺;课于九尺之垣,是为有余一尺二寸。以盈、不足维乘假令之数者,欲为齐同之意。齐其假令,同其盈朒。通计齐即不盈不朒之正数,故可并以为实,并盈、不足为法。实如法而一,即设差不盈不朒之正数,即得日数。以瓜、瓠一日之长乘之,故各得其长之数也。〕今有蒲生一日,长三尺;莞生一日,长一尺。蒲生日自半,莞生日自倍。问几何日而长等?答曰:二日十三分日之六。各长四尺八寸一十三分寸之六。
术曰:假令二日,不足一尺五寸;令之三日,有余一尺七寸半。
〔按:“假令二日,不足一尺五寸”者,蒲生二日,长四尺五寸;莞生二日,长三尺;是为未相及一尺五寸,故曰不足。“令之三日,有余一尺七寸半”者,蒲增前七寸半,莞增前四尺,是为过一尺七寸半,故曰有余。以盈不足乘除之。
又以后一日所长各乘日分子,如日分母而一者,各得日分子之长也。故各增二日定长,即得其数。〕今有醇酒一斗,直钱五十;行酒一斗,直钱一十。今将钱三十,得酒二斗。
问醇、行酒各得几何?答曰:醇酒二升半。行洒一斗七升半。
术曰:假令醇酒五升,行酒一斗五升,有余一十;令之醇酒二升,行酒一斗八升,不足二。
〔据醇酒五升,直钱二十五;行酒一斗五升,直钱一十五;课于三十,是为有余十。据醇酒二升,直钱一十;行酒一斗八升,直钱一十八;课于三十,是为不足二。以盈不足术求之。此问已有重设及其齐同之意也。〕今有大器五,小器一,容三斛;大器一,小器五,容二斛。问大、小器各容几何?答曰:大器容二十四分斛之十三。小器容二十四分斛之七。
术曰:假令大器五斗,小器亦五斗,盈一十斗;令之大器五斗五升,小器二斗五升,不足二斗。
〔按:大器容五斗,大器五容二斛五斗。以减三斛,余五斗,即小器一所容。
故曰“小器亦五斗”。小器五容二斛五斗,大器一,合为三斛。课于两斛,乃多十斗。令之大器五斗五升,大器五合容二斛七斗五升。以减三斛,余二斗五升,即小器一所容。故曰小器二斗五升”。大器一容五斗五升,小器五合容一斛二斗五升,合为一斛八斗。课于二斛,少二斗。故曰“不足二斗”。以盈不足维乘,除之。〕今有漆三得油四,油四和漆五。今有漆三斗,欲令分以易油,还自和余漆。
问出漆、得油、和漆各几何?答曰:出漆一斗一升四分升之一。得油一斗五升。
和漆一斗八升四分升之三。
术曰:假令出漆九升,不足六升;令之出漆一斗二升,有余二升。
〔按:此术三斗之漆,出九升,得油一斗二升,可和漆一斗五升,余有二斗一升,则六升无油可和,故曰“不足六升”。令之出漆一斗二升,则易得油一斗六升,可和漆二斗。于三斗之中已出一斗二升,余有一斗八升。见在油合和得漆二斗,则是有余二升。以盈、不足维乘之,为实。并盈、不足为法。实如法而一,得出漆升数。求油及和漆者,四、五各为所求率,三、四各为所有率,而今有之,即得也。〕今有玉方一寸,重七两;石方一寸,重六两。今有石立方三寸,中有玉,并重十一斤。问玉、石重各几何?答曰:玉一十四寸,重六斤二两。石一十三寸,重四斤一十四两。
术曰:假令皆玉,多十三两;令之皆石,不足一十四两。不足为玉,多为石。
各以一寸之重乘之,得玉、石之积重。
〔立方三寸是一面之方,计积二十七寸。玉方一寸重七两,石方一寸重六两,是为玉、石重差一两。假令皆玉,合有一百八十九两。课于一十一斤,有余一十三两。玉重而石轻,故有此多。即二十七寸之中有十三寸,寸损一两,则以为石重,故言多为石。言多之数出于石以为玉。假令皆石,合有一百六十二两。课于十一斤,少十四两,故曰不足。此不足即以重为轻。故令减少数于并重,即二十七寸之中有十四寸,寸增一两也。〕今有善田一亩,价三百;恶田七亩,价五百。今并买一顷,价钱一万。问善、恶田各几何?答曰:善田一十二亩半。恶田八十七亩半。
术曰:假令善田二十亩,恶田八十亩,多一千七百一十四钱七分钱之二;令之善田一十亩,恶田九十亩,不足五百七十一钱七分钱之三。
〔按:善田二十亩,直钱六千;恶田八十亩,直钱五千七百一十四、七分钱之二,课于一万,是多一千七百一十四、七分钱之二。令之善田十亩,直钱三千;恶田九十亩,直钱六千四百二十八、七分钱之四;课于一万,是为不足五百七十一、七分钱之三。以盈不足术求之也。〕今有黄金九枚,白银一十一枚,称之重,适等。交易其一,金轻十三两。问金、银一枚各重几何?答曰:金重二斤三两一十八铢。银重一斤一十三两六铢。
术曰:假令黄金三斤,白银二斤一十一分斤之五,不足四十九,于右行。令之黄金二斤,白银一斤一十一分斤之七,多一十五,于左行。以分母各乘其行内之数。以盈、不足维乘所出率,并,以为实。并盈、不足为法。实如法,得黄金重。分母乘法以除,得银重。约之得分也。
〔按:此术假令黄金九,白银一十一,俱重二十七斤。金,九约之,得三斤;银,一十一约之,得二斤一十一分斤之五;各为金、银一枚重数。就金重二十七斤之中减一金之重,以益银,银重二十七斤之中减一银之重,以益金,则金重二十六斤一十一分斤之五,银重二十七斤一十一分斤之六。以少减多,则金轻一十七两一十一分两之五。课于一十三两,多四两一十一分两之五。通分内子言之,是为不足四十九。又令之黄金九,一枚重二斤,九枚重一十八斤;白银一十一,亦合重一十八斤也。乃以一十一除之,得一斤一十一分斤之七,为银一枚之重数。
今就金重一十八斤之中减一枚金,以益银;复减一枚银,以益金,则金重一十七斤一十一分斤之七,银重一十八斤一十一分斤之四。以少减多,即金轻一十一分斤之八。课于一十三两,少一两一十一分两之四。通分内子言之,是为多一十五。
以盈不足为之,如法,得金重。分母乘法以除者,为银两分母,故同之。须通法而后乃除,得银重。余皆约之者,术省故也。〕今有良马与驽马发长安,至齐。齐去长安三千里。良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里。良马先至齐,复还迎驽马。问几何日相逢及各行几何?答曰:一十五日一百九十一分日之一百三十五而相逢。
良马行四千五百三十四里一百九十一分里之四十六。驽马行一千四百六十五里一百九十一分里之一百四十五。
术曰:假令十五日,不足三百三十七里半;令之十六日,多一百四十里。以盈、不足维乘假令之数,并而为实。并盈、不足为法。实如法而一,得日数。不尽者,以等数除之而命分。求良马行者:十四乘益疾里数而半之,加良马初日之行里数,以乘十五日,得十五日之凡行。又以十五日乘益疾里数,加良马初日之行。以乘日分子,如日分母而一。所得,加前良马凡行里数,即得。其不尽而命分。求驽马行者:以十四乘半里,又半之,以减驽马初日之行里数,以乘十五日,得驽马十五日之凡行。又以十五日乘半里,以减驽马初日之行,余,以乘日分子,如日分母而一。所得,加前里,即驽马定行里数。其奇半里者,为半法。以半法增残分,即得。其不尽者而命分。
〔按:“令十五日,不足三百三十七里半”者,据良马十五日凡行四千二百六十里,除先去齐三千里,定还迎驽马一千二百六十里;驽马十五日凡行一千四百二里半,并良、驽二马所行,得二千六百六十二里半。课于三千里,少三百三十七里半。故曰不足。“令之十六日,多一百四十里”者,据良马十六日凡行四千六百四十八里;除先去齐三千里,定还迎驽马一千六百四十八里,驽马十六日凡行一千四百九十二里。并良、驽二马所行,得三千一百四十里。课于三千里,余有一百四十里。故谓之多也。以盈不足之,实如法而一,得日数者,即设差不盈不朒之正数。以二马初日所行里乘十五日,为一十五日平行数。求初末益疾减迟之数者,并一与十四,以十四乘而半之,为中平之积。又令益疾减迟里数乘之,各为减益之中平里。故各减益平行数,得一十五日定行里。若求后一日,以十六日之定行里数乘日分子,如日分母而一,各得日分子之定行里数。故各并十五日定行里,即得。其驽马奇半里者,法为全里之分,故破半里为半法,以增残分,即合所问也。〕今有人持钱之蜀贾,利十,三。初返归一万四千,次返归一万三千,次返归一万二千,次返归一万一千,后返归一万。凡五返归钱,本利俱尽。问本持钱及利各几何?答曰:本三万四百六十八钱三十七万一千二百九十三分钱之八万四千八百七十六。利二万九千五百三十一钱三十七万一千二百九十三分钱之二十八万六千四百一十七。
术曰:假令本钱三万,不足一千七百三十八钱半;令之四万,多三万五千三百九十钱八分。
〔按:假令本钱三万,并利为三万九千;除初返归留,余,加利为三万二千五百;除二返归留,余,又加利为二万五千三百五十;除第三返归留,余,又加利为一万七千三百五十五;除第四返归留,余,又加利为八千二百六十一钱半;除第五返归留,合一万钱,不足一千七百三十八钱半。若使本钱四万,并利为五万二千;除初返归留,余,加利为四万九千四百;除第二返归留,余,又加利为四万七千三百二十;除第三返归留,余,又加利为四万五千九百一十六;除第四返归留,余,又加利为四万五千三百九十钱八分;除第五返归留,合一万,余三万五千三百九十钱八分,故曰多。
又术:置后返归一万,以十乘之,十三而一,即后所持之本。加一万一千,又以十乘之,十三而一,即第四返之本。加一万二千,又以十乘之,十三而一,即第三返之本。加一万三千,又以十乘之,十三而一,即第二返之本。加一万四千,又以十乘之,十三而一,即初持之本。并五返之钱以减之,即利也。〕今有垣厚五尺,两鼠对穿。大鼠日一尺,小鼠亦日一尺。大鼠日自倍,小鼠日自半。问几何日相逢?各穿几何?答曰:二日一十七分日之二。大鼠穿三尺四寸十七分寸之一十二,小鼠穿一尺五寸十七分寸之五。
术曰:假令二日,不足五寸;令之三日,有余三尺七寸半。
〔大鼠日倍,二日合穿三尺;小鼠日自半,合穿一尺五寸;并大鼠所穿,合四尺五寸。课于垣厚五尺,是为不足五寸。令之三日,大鼠穿得七尺,小鼠穿得一尺七寸半。并之,以减垣厚五尺,有余三尺七寸半。以盈不足术求之,即得。
以后一日所穿乘日分子,如日分母而一,即各得日分子之中所穿。故各增二日定穿,即合所问也。〕
《卷八》
《卷八》作者:张苍
○方程(以御错糅正负)今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗。问上、中、下禾实一秉各几何?答曰:上禾一秉九斗四分斗之一。中禾一秉四斗四分斗之一。下禾一秉二斗四分斗之三。
方程〔程,课程也。群物总杂,各列有数,总言其实。令每行为率。二物者再程,三物者三程,皆如物数程之。并列为行,故谓之方程。行之左右无所同存,且为有所据而言耳。此都术也,以空言难晓,故特系之禾以决之。又列中、左行如右行也。〕术曰:置上禾三秉,中禾二秉,下禾一秉,实三十九斗于右方。中、左禾列如右方。以右行上禾遍乘中行,而以直除。
〔为术之意,令少行减多行,反复相减,则头位必先尽。上无一位,则此行亦阙一物矣。然而举率以相减,不害余数之课也。若消去头位,则下去一物之实。
如是叠令左右行相减,审其正负,则可得而知。先令右行上禾乘中行,为齐同之意。为齐同者,谓中行直减右行也。从简易虽不言齐同,以齐同之意观之,其义然矣。〕又乘其次,亦以直除。
〔复去左行首。〕然以中行中禾不尽者遍乘左行,而以直除。
〔亦令两行相去行之中禾也。〕左方下禾不尽者,上为法,下为实。实即下禾之实。
〔上、中禾皆去,故余数是下禾实,非但一秉。欲约众秉之实,当以禾秉数为法。列此,以下禾之秉数乘两行,以直除,则下禾之位皆决矣。各以其余一位之秉除其下实。即计数矣用算繁而不省。所以别为法,约也。然犹不如自用其旧。
广异法也。〕求中禾,以法乘中行下实,而除下禾之实。
〔此谓中两禾实,下禾一秉实数先见,将中秉求中禾,其列实以减下实。而左方下禾虽去一,以法为母,于率不通。故先以法乘,其通而同之。俱令法为母,而除下禾实。以下禾先见之实令乘下禾秉数,即得下禾一位之列实。减于下实,则其数是中禾之实也。〕余,如中禾秉数而一,即中禾之实。
〔余,中禾一位之实也。故以一位秉数约之,乃得一秉之实也。〕求上禾,亦以法乘右行下实,而除下禾、中禾之实。
〔此右行三禾共实,合三位之实。故以二位秉数约之,乃得一秉之实。今中下禾之实其数并见,令乘右行之禾秉以减之。故亦如前各求列实,以减下实也。〕余,如上禾秉数而一,即上禾之实。实皆如法,各得一斗。
〔三实同用,不满法者,以法命之。母、实皆当约之。〕今有上禾七秉,损实一斗,益之下禾二秉,而实一十斗;下禾八秉,益实一斗,与上禾二秉,而实一十斗。问上、下禾实一秉各几何?答曰:上禾一秉实一斗五十二分斗之一十八。下禾一秉实五十二分斗之四十一。
术曰:如方程。损之曰益,益之曰损。
〔问者之辞虽?今按:实云上禾七秉,下禾二秉,实一十一斗;上禾二秉,下禾八秉,实九斗也。“损之曰益”,言损一斗,余当一十斗;今欲全其实,当加所损也。“益之曰损”,言益实以一斗,乃满一十斗;今欲知本实,当减所加,即得也。〕损实一斗者,其实过一十斗也;益实一斗者,其实不满一十斗也。
〔重谕损益数者,各以损益之数损益之也。〕今有上禾二秉,中禾三秉,下禾四秉,实皆不满斗。上取中、中取下、下取上各一秉而实满斗。问上、中、下禾实一秉各几何?答曰上禾一秉实二十五分斗之九。中禾一秉实二十五分斗之七。下禾一秉实二十五分斗之四。
术曰:如方程。各置所取。
〔置上禾二秉为右行之上,中禾三秉为中行之中,下禾四秉为左行之下,所取一秉及实一斗各从其位。诸行相借取之物皆依此例。〕以正负术入之。
正负术曰:〔今两算得失相反,要令正负以名之。正算赤,负算黑,否则以邪正为异。
方程自有赤、黑相取,法、实数相推求之术。而其并减之势不得广通,故使赤、黑相消夺之,于算或减或益。同行异位殊为二品,各有并、减之差见于下焉。著此二条,特系之禾以成此二条之意。故赤、黑相杂足以定上下之程,减、益虽殊足以通左右之数,差、实虽分足以应同异之率。然则其正无入以负之,负无入以正之,其率不妄也。〕同名相除,〔此谓以赤除赤,以黑除黑,行求相减者,为去头位也。然则头位同名者,当用此条,头位异名者,当用下条。〕异名相益,〔益行减行,当各以其类矣。其异名者,非其类也。非其类者,犹无对也,非所得减也。故赤用黑对则除,黑;无对则除,黑;黑用赤对则除,赤;无对则除,赤;赤黑并于本数。此为相益之,皆所以为消夺。消夺之与减益成一实也。
术本取要,必除行首。至于他位,不嫌多少,故或令相减,或令相并,理无同异而一也。〕正无入负之,负无入正之。
〔无入,为无对也。无所得减,则使消夺者居位也。其当以列实或减下实,而行中正负杂者亦用此条。此条者,同名减实,异名益实,正无入负之,负无入正之也。〕其异名相除,同名相益,正无入正之,负无入负之。
〔此条异名相除为例,故亦与上条互取。凡正负所以记其同异,使二品互相取而已矣。言负者未必负于少,言正者未必正于多。故每一行之中虽复赤黑异算无伤。然则可得使头位常相与异名。此条之实兼通矣,遂以二条反覆一率。观其每与上下互相取位,则随算而言耳,犹一术也。又,本设诸行,欲因成数以相去耳。故其多少无限,令上下相命而已。若以正负相减,如数有旧增法者,每行可均之,不但数物左右之也。〕今有上禾五秉,损实一斗一升,当下禾七秉;上禾七秉,损实二斗五升,当下禾五秉。问上、下禾实一秉各几何?答曰:上禾一秉五升。下禾一秉二升。
术曰:如方程。置上禾五秉正,下禾七秉负,损实一斗一升正。
〔言上禾五秉之实多,减其一斗一升,余,是与下禾七秉相当数也。故互其算,令相折除,以一斗一升为差。为差者,上禾之余实也。〕次置上禾七秉正,下禾五秉负,损实二斗五升正。以正负术入之。
〔按:正负之术,本设列行,物程之数不限多少,必令与实上下相次,而以每行各自为率。然而或减或益,同行异位,殊为二品,各自并、减,之差见于下也。〕今有上禾六秉,损实一斗八升,当下禾一十秉;下禾一十五秉,损实五升,当上禾五秉。问上、下禾实一秉各几何?答曰:上禾一秉实八升。下禾一秉实三升。
术曰:如方程。置上禾六秉正,下禾一十秉负,损实一斗八升正。次,上禾五秉负,下禾一十五秉正,损实五升正。以正负术入之。
〔言上禾六秉之实多,减损其一斗八升,余是与下禾十秉相当之数。故亦互其算,而以一斗八升为差实。差实者,上禾之余实。〕今有上禾三秉,益实六斗,当下禾一十秉;下禾五秉,益实一斗,当上禾二秉。问上、下禾实一秉各几何?答曰:上禾一秉实八斗。下禾一秉实三斗。
术曰:如方程。置上禾三秉正,下禾一十秉负,益实六斗负。次置上禾二秉负,下禾五秉正,益实一斗负。以正负术入之。
〔言上禾三秉之实少,益其六斗,然后于下禾十秉相当也。故亦互其算,而以六斗为差实。差实者,下禾之余实。〕今有牛五,羊二,直金十两;牛二,羊五,直金八两。问牛、羊各直金几何?答曰:牛一直金一两二十一分两之一十三。羊一直金二十一分两之二十。
术曰:如方程。
〔假令为同齐,头位为牛,当相乘。右行定,更置牛十,羊四,直金二十两;左行:牛十,羊二十五,直金四十两。牛数等同,金多二十两者,羊差二十一使之然也。以少行减多行,则牛数尽,惟羊与直金之数见,可得而知也。以小推大,虽四五行不异也。〕今有卖牛二,羊五,以买一十三豕,有余钱一千;卖牛三,豕三,以买九羊,钱适足;卖六羊,八豕,以买五牛,钱不足六百。问牛、羊、豕价各几何?答曰牛价一千二百。羊价五百。豕价三百。
术曰:如方程。置牛二,羊五正,豕一十三负,余钱数正;次,牛三正,羊九负,豕三正;次五牛负,六羊正,八豕正,不足钱负。以正负术入之。
〔此中行买、卖相折,钱适足,故但互买卖算而已。故下无钱直也。设欲以此行如方程法,先令二牛遍乘中行,而以右行直除之。是故终于下实虚缺矣。故注曰正无实负,负无实正,方为类也。方将以别实加适足之数与实物作实。
盈不足章“黄金白银”与此相当。“假令黄金九,白银一十一,称之重适等。
交易其一,金轻十三两。问金、银一枚各重几何?”与此同。〕今有五雀六燕,集称之衡,雀俱重,燕俱轻。一雀一燕交而处,衡适平。并雀、燕重一斤。问雀、燕一枚各重几何?答曰:雀重一两一十九分两之一十三。
燕重一两一十九分两之五。
术曰:如方程。交易质之,各重八两。
〔此四雀一燕与一雀五燕衡适平,并重一斤,故各八两。列两行程数。左行头位其数有一者,令右行遍除。亦可令于左行而取其法、实于左。左行数多,以右行取其数。左头位减尽,中、下位算当燕与实。右行不动。左上空,中法,下实,即每枚当重宜可知也。按:此四雀一燕与一雀五燕其重等,是三雀、四燕重相当。雀率重四,燕率重三也。诸再程之率皆可异术求也,即其数也。〕今有甲、乙二人持钱不知其数。甲得乙半而钱五十,乙得甲太半而亦钱五十。
问甲、乙持钱各几何?答曰:甲持三十七钱半。乙持二十五钱。
术曰:如方程。损益之。
〔此问者言一甲,半乙而五十;太半甲,一乙亦五十也。各以分母乘其全,内子。行定:二甲,一乙而钱一百;二甲,三乙而钱一百五十。于是乃如方程。
诸物有分者放此。〕今有二马,一牛,价过一万,如半马之价;一马,二牛,价不满一万,如半牛之价。问牛、马价各几何?答曰:马价五千四百五十四钱一十一分钱之六。牛价一千八百一十八钱一十一分钱之二。
术曰:如方程。损益之。
〔此一马半与一牛价直一万也,二牛半与一马亦直一万也。一马半与一牛直钱一万,通分内子,右行为三马,二牛,直钱二万。二牛半与一马直钱一万,通分内子,左行为二马,五牛,直钱二万也。〕今有武马一匹,中马二匹,下马三匹,皆载四十石至阪,皆不能上。武马借中马一匹,中马借下马一匹,下马借武马一匹,乃皆上。问武、中、下马一匹各力引几何?答曰:武马一匹力引二十二石七分石之六。中马一匹力引一十七石七分石之一。下马一匹力引五石七分石之五。
术曰:如方程。各置所借,以正负术入之。
今有五家共井,甲二绠不足,如乙一绠。乙三绠不足,以丙一绠;丙四绠不足,以丁一绠;丁五绠不足,以戊一绠;戊六绠不足,以甲一绠。如各得所不足一绠,皆逮。问井深、绠长各几何?答曰:井深七丈二尺一寸。甲绠长二丈六尺五寸。乙绠长一丈九尺一寸。丙绠长一丈四尺八寸。丁绠长一丈二尺九寸。戊绠长七尺六寸。
术曰:如方程。以正负术入之。
〔此率初如方程为之,名各一逮井。其后,法得七百二十一,实七十六,是为七百二十一绠而七十六逮井,并用逮之数。以法除实者,而戊一绠逮井之数定,逮七百二十一分之七十六。是故七百二十一为井深,七十六为戊绠之长,举率以言之。〕今有白禾二步,青禾三步,黄禾四步,黑禾五步,实各不满斗。白取青、黄,青取黄、黑,黄取黑、白,黑取白、青,各一步,而实满斗。问白、青、黄、黑禾实一步各几何?答曰:白禾一步实一百一十一分斗之三十三。青禾一步实一百一十一分斗之二十八。黄禾一步实一百一十一分斗之一十七。黑禾一步实一百一十一分斗之一十。
术曰:如方程。各置所取,以正负术入之。
今有甲禾二秉,乙禾三秉,丙禾四秉,重皆过于石。甲二重如乙一,乙三重如丙一,丙四重如甲一。问甲、乙、丙禾一秉各重几何?答曰:甲禾一秉重二十三分石之一十七。乙禾一秉重二十三分石之一十一。丙禾一秉重二十三分石之一十。
术曰:如方程。置重过于石之物为负。
〔此问者言甲禾二秉之重过于一石也。其过者何云?如乙一秉重矣。互其算,令相折除,而一以石为之差实。差实者,如甲禾余实。故置算相与同也。〕以正负术入之。
〔此入,头位异名相除者,正无入正之,负无入负之也。〕今有令一人,吏五人,从者一十人,食鸡一十;令一十人,吏一人,从者五人,食鸡八;令五人,吏一十人,从者一人,食鸡六。问令、吏、从者食鸡各几何?答曰令一人食一百二十二分鸡之四十五。吏一人食一百二十二分鸡之四十一。
从者一人食一百二十二分鸡之九十七。
术曰:如方程。以正负术入之。
今有五羊,四犬,三鸡,二兔,直钱一千四百九十六;四羊,二犬,六鸡,三兔,直钱一千一百七十五;三羊,一犬,七鸡,五兔,直钱九百五十八;二羊,三犬,五鸡,一兔,直钱八百六十一。问羊、犬、鸡、兔价各几何?答曰:羊价一百七十七。犬价一百二十一。鸡价二十三。兔价二十九。
术曰:如方程。以正负术入之。
今有麻九斗,麦七斗,菽三斗,荅二斗,黍五斗,直钱一百四十;麻七斗,麦六斗,菽四斗,荅五斗,黍三斗,直钱一百二十八;麻三斗,麦五斗,菽七斗,荅六斗,黍四斗,直钱一百一十六;麻二斗,麦五斗,菽三斗,荅九斗,黍四斗,直钱一百一十二;麻一斗,麦三斗,菽二斗,荅八斗,黍五斗,直钱九十五。问一斗直几何?荅曰:麻一斗七钱。麦一斗四钱。菽一斗三钱。荅一斗五钱。黍一斗六钱。
术曰:如方程。以正负术入之。
〔此麻麦与均输、少广之章重衰、积分皆为大事。其拙于精理徒按本术者,或用算而布毡,方好烦而喜误,曾不知其非,反欲以多为贵。故其算也,莫不暗于设通而专于一端。至于此类,苟务其成,然或失之,不可谓要约。更有异术者,庖丁解牛,游刃理间,故能历久其刃如新。夫数,犹刃也,易简用之则动中庖丁之理。故能和神爱刃,速而寡尤。凡九章为大事,按法皆不尽一百算也。虽布算不多,然足以算多。世人多以方程为难,或尽布算之象在缀正负而已,未暇以论其设动无方,斯胶柱调瑟之类。聊复恢演,为作新术,著之于此,将亦启导疑意。
网罗道精,岂传之空言?记其施用之例,著策之数,每举一隅焉。
方程新术曰:以正负术入之。令左、右相减,先去下实,又转去物位,则其求一行二物正负相借者,是其相当之率。又令二物与他行互相去取,转其二物相借之数,即皆相当之率也。各据二物相当之率,对易其数,即各当之率也。更置成行及其下实,各以其物本率今有之,求其所同。并,以为法。其当相并而行中正负杂者,同名相从,异名相消,余,以为法。以下置为实。实如法,即合所问也。一物各以本率今有之,即皆合所问也。率不通者,齐之。
其一术曰:置群物通率为列衰。更置成行群物之数,各以其率乘之,并,以为法。其当相并而行中正负杂者,同名相从,异名相消,余为法。以成行下实乘列衰,各自为实。实如法而一,即得。
以旧术为之。凡应置五行。今欲要约,先置第三行,减以第四行,又减第五行;次置第二行,以第二行减第一行,又减第四行。去其头位;余,可半;次置右行及第二行。去其头位;次以右行去第四行头位,次以左行去第二行头位,次以第五行去第一行头位;次以第二行去第四行头位;余,可半;以右行去第二行头位,以第二行去第四行头位。余,约之为法、实。实如法而一,得六,即有黍价。以法治第二行,得荅价,右行得菽价,左行得麦价,第三行麻价。如此凡用七十七算。
以新术为此。先以第四行减第三行;次以第三行去右行及第二行、第四行下位,又以减左行下位,不足减乃止;次以左行减第三行下位,次以第三行去左行下位。讫,废去第三行。次以第四行去左行下位,又以减右行下位;次以右行去第二行及第四行下位;次以第二行减第四行及左行头位;次以第四行减左行菽位,不足减乃止;次以左行减第二行头位,余,可再半;次以第四行去左行及第二行头位,次以第二行去左行头位,余,约之,上得五,下得三,是菽五当荅;次以左行去第二行菽位,又以减第四行及右行菽位,不足减乃止;次以右行减第二行头位,不足减乃止;次以第二行去右行头位,次以左行去右行头位;余,上得六,下得五,是为荅六当黍五;次以左行去右行荅位,余,约之,上为二,下为一;次以右行去第二行下位,以第二行去第四行下位,又以减左行下位;次,左行去第二行下位,余,上得三,下得四,是为麦三当菽四;次以第二行减第四行下位;次以第四行去第二行下位;余,上得四,下得七,是为麻四当麦七。是为相当之率举矣。据麻四当麦七,即麻价率七而麦价率四;又麦三当菽四,即为麦价率四而菽价率三;又菽五当荅三,即为菽价率三而荅价率五;又荅六当黍五,即为荅价率五而黍价率六;而率通矣。更置第三行,以第四行减之,余有麻一斗,菽四斗正,荅三斗负,下实四正。求其同为麻之数,以菽率三、荅率五各乘其斗数,如麻率七而一,菽得一斗七分斗之五正,荅得二斗七分斗之一负。则菽、荅化为麻。以并之,令同名相从,异名相消,余得定麻七分斗之四,以为法。置四为实,而分母乘之,实得二十八,而分子化为法矣以法除得七,即麻一斗之价。置麦率四、菽率三、荅率五、黍率( 九章算术 http://www.xlawen.org/kan/485/ )
实如法而一,得人数。以所出率乘之,减盈、增不足,即物价。
〔“置所出率,以少减多”,得一人之差。两盈、两不足相减,为众人之差。
故以一人之差除之,得人数。以所出率乘之,减盈、增不足,即物价。〕今有共买犬,人出五,不足九十;人出五十,适足。问人数、犬价各几何?答曰:二人。犬价一百。
今有共买豕,人出一百,盈一百;人出九十,适足。问人数、豕价各几何?答曰:一十人。豕价九百。
术曰:以盈及不足之数为实。置所出率,以少减多,余为法。实如法得一人。
其求物价者,以适足乘人数,得物价。
〔此术意谓以所出率,以少减多者,余是一人不足之差。不足数为众人之差。
以一人差约之,故得人之数也。以盈及不足数为实者,数单见,即众人差,故以为实。所出率以少减多,即一人差,故以为法。以除众人差,得人数。以适足乘人数,即得物价也。〕今有米在十斗桶中,不知其数。满中添粟而舂之,得米七斗。问故米几何?答曰:二斗五升。
术曰:以盈不足术求之。假令故米二斗,不足二升;令之三斗,有余二升。
〔按:桶受一斛,若使故米二斗,须添粟八斗以满之。八斗得粝米四斗八升,课于七斗,是为不足二升。若使故米三斗,须添粟七斗以满之。七斗得粝米四斗二升,课于七斗,是为有余二升。以盈不足维乘假令之数者,欲为齐同之意。为齐同者,齐其假令,同其盈朒。通计齐即不盈不朒之正数,故可以并之为实,并盈、不足为法。实如法,即得故米斗数,乃不盈不朒之正数也。〕今有垣高九尺。瓜生其上,蔓日长七寸;瓠生其下,蔓日长一尺。问几何日相逢?瓜、瓠各长几何?答曰:五日十七分日之五。瓜长三尺七寸一十七分寸之一。瓠长五尺二寸一十七分寸之一十六。
术曰:假令五日,不足五寸;令之六日,有余一尺二寸。
〔按:“假令五日,不足五寸”者,瓜生五日,下垂蔓三尺五寸;瓠生五日,上延蔓五尺;课于九尺之垣,是为不足五寸。“令之六日,有余一尺二寸”者,若使瓜生六日,下垂蔓四尺二寸;瓠生六日,上延蔓六尺;课于九尺之垣,是为有余一尺二寸。以盈、不足维乘假令之数者,欲为齐同之意。齐其假令,同其盈朒。通计齐即不盈不朒之正数,故可并以为实,并盈、不足为法。实如法而一,即设差不盈不朒之正数,即得日数。以瓜、瓠一日之长乘之,故各得其长之数也。〕今有蒲生一日,长三尺;莞生一日,长一尺。蒲生日自半,莞生日自倍。问几何日而长等?答曰:二日十三分日之六。各长四尺八寸一十三分寸之六。
术曰:假令二日,不足一尺五寸;令之三日,有余一尺七寸半。
〔按:“假令二日,不足一尺五寸”者,蒲生二日,长四尺五寸;莞生二日,长三尺;是为未相及一尺五寸,故曰不足。“令之三日,有余一尺七寸半”者,蒲增前七寸半,莞增前四尺,是为过一尺七寸半,故曰有余。以盈不足乘除之。
又以后一日所长各乘日分子,如日分母而一者,各得日分子之长也。故各增二日定长,即得其数。〕今有醇酒一斗,直钱五十;行酒一斗,直钱一十。今将钱三十,得酒二斗。
问醇、行酒各得几何?答曰:醇酒二升半。行洒一斗七升半。
术曰:假令醇酒五升,行酒一斗五升,有余一十;令之醇酒二升,行酒一斗八升,不足二。
〔据醇酒五升,直钱二十五;行酒一斗五升,直钱一十五;课于三十,是为有余十。据醇酒二升,直钱一十;行酒一斗八升,直钱一十八;课于三十,是为不足二。以盈不足术求之。此问已有重设及其齐同之意也。〕今有大器五,小器一,容三斛;大器一,小器五,容二斛。问大、小器各容几何?答曰:大器容二十四分斛之十三。小器容二十四分斛之七。
术曰:假令大器五斗,小器亦五斗,盈一十斗;令之大器五斗五升,小器二斗五升,不足二斗。
〔按:大器容五斗,大器五容二斛五斗。以减三斛,余五斗,即小器一所容。
故曰“小器亦五斗”。小器五容二斛五斗,大器一,合为三斛。课于两斛,乃多十斗。令之大器五斗五升,大器五合容二斛七斗五升。以减三斛,余二斗五升,即小器一所容。故曰小器二斗五升”。大器一容五斗五升,小器五合容一斛二斗五升,合为一斛八斗。课于二斛,少二斗。故曰“不足二斗”。以盈不足维乘,除之。〕今有漆三得油四,油四和漆五。今有漆三斗,欲令分以易油,还自和余漆。
问出漆、得油、和漆各几何?答曰:出漆一斗一升四分升之一。得油一斗五升。
和漆一斗八升四分升之三。
术曰:假令出漆九升,不足六升;令之出漆一斗二升,有余二升。
〔按:此术三斗之漆,出九升,得油一斗二升,可和漆一斗五升,余有二斗一升,则六升无油可和,故曰“不足六升”。令之出漆一斗二升,则易得油一斗六升,可和漆二斗。于三斗之中已出一斗二升,余有一斗八升。见在油合和得漆二斗,则是有余二升。以盈、不足维乘之,为实。并盈、不足为法。实如法而一,得出漆升数。求油及和漆者,四、五各为所求率,三、四各为所有率,而今有之,即得也。〕今有玉方一寸,重七两;石方一寸,重六两。今有石立方三寸,中有玉,并重十一斤。问玉、石重各几何?答曰:玉一十四寸,重六斤二两。石一十三寸,重四斤一十四两。
术曰:假令皆玉,多十三两;令之皆石,不足一十四两。不足为玉,多为石。
各以一寸之重乘之,得玉、石之积重。
〔立方三寸是一面之方,计积二十七寸。玉方一寸重七两,石方一寸重六两,是为玉、石重差一两。假令皆玉,合有一百八十九两。课于一十一斤,有余一十三两。玉重而石轻,故有此多。即二十七寸之中有十三寸,寸损一两,则以为石重,故言多为石。言多之数出于石以为玉。假令皆石,合有一百六十二两。课于十一斤,少十四两,故曰不足。此不足即以重为轻。故令减少数于并重,即二十七寸之中有十四寸,寸增一两也。〕今有善田一亩,价三百;恶田七亩,价五百。今并买一顷,价钱一万。问善、恶田各几何?答曰:善田一十二亩半。恶田八十七亩半。
术曰:假令善田二十亩,恶田八十亩,多一千七百一十四钱七分钱之二;令之善田一十亩,恶田九十亩,不足五百七十一钱七分钱之三。
〔按:善田二十亩,直钱六千;恶田八十亩,直钱五千七百一十四、七分钱之二,课于一万,是多一千七百一十四、七分钱之二。令之善田十亩,直钱三千;恶田九十亩,直钱六千四百二十八、七分钱之四;课于一万,是为不足五百七十一、七分钱之三。以盈不足术求之也。〕今有黄金九枚,白银一十一枚,称之重,适等。交易其一,金轻十三两。问金、银一枚各重几何?答曰:金重二斤三两一十八铢。银重一斤一十三两六铢。
术曰:假令黄金三斤,白银二斤一十一分斤之五,不足四十九,于右行。令之黄金二斤,白银一斤一十一分斤之七,多一十五,于左行。以分母各乘其行内之数。以盈、不足维乘所出率,并,以为实。并盈、不足为法。实如法,得黄金重。分母乘法以除,得银重。约之得分也。
〔按:此术假令黄金九,白银一十一,俱重二十七斤。金,九约之,得三斤;银,一十一约之,得二斤一十一分斤之五;各为金、银一枚重数。就金重二十七斤之中减一金之重,以益银,银重二十七斤之中减一银之重,以益金,则金重二十六斤一十一分斤之五,银重二十七斤一十一分斤之六。以少减多,则金轻一十七两一十一分两之五。课于一十三两,多四两一十一分两之五。通分内子言之,是为不足四十九。又令之黄金九,一枚重二斤,九枚重一十八斤;白银一十一,亦合重一十八斤也。乃以一十一除之,得一斤一十一分斤之七,为银一枚之重数。
今就金重一十八斤之中减一枚金,以益银;复减一枚银,以益金,则金重一十七斤一十一分斤之七,银重一十八斤一十一分斤之四。以少减多,即金轻一十一分斤之八。课于一十三两,少一两一十一分两之四。通分内子言之,是为多一十五。
以盈不足为之,如法,得金重。分母乘法以除者,为银两分母,故同之。须通法而后乃除,得银重。余皆约之者,术省故也。〕今有良马与驽马发长安,至齐。齐去长安三千里。良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里。良马先至齐,复还迎驽马。问几何日相逢及各行几何?答曰:一十五日一百九十一分日之一百三十五而相逢。
良马行四千五百三十四里一百九十一分里之四十六。驽马行一千四百六十五里一百九十一分里之一百四十五。
术曰:假令十五日,不足三百三十七里半;令之十六日,多一百四十里。以盈、不足维乘假令之数,并而为实。并盈、不足为法。实如法而一,得日数。不尽者,以等数除之而命分。求良马行者:十四乘益疾里数而半之,加良马初日之行里数,以乘十五日,得十五日之凡行。又以十五日乘益疾里数,加良马初日之行。以乘日分子,如日分母而一。所得,加前良马凡行里数,即得。其不尽而命分。求驽马行者:以十四乘半里,又半之,以减驽马初日之行里数,以乘十五日,得驽马十五日之凡行。又以十五日乘半里,以减驽马初日之行,余,以乘日分子,如日分母而一。所得,加前里,即驽马定行里数。其奇半里者,为半法。以半法增残分,即得。其不尽者而命分。
〔按:“令十五日,不足三百三十七里半”者,据良马十五日凡行四千二百六十里,除先去齐三千里,定还迎驽马一千二百六十里;驽马十五日凡行一千四百二里半,并良、驽二马所行,得二千六百六十二里半。课于三千里,少三百三十七里半。故曰不足。“令之十六日,多一百四十里”者,据良马十六日凡行四千六百四十八里;除先去齐三千里,定还迎驽马一千六百四十八里,驽马十六日凡行一千四百九十二里。并良、驽二马所行,得三千一百四十里。课于三千里,余有一百四十里。故谓之多也。以盈不足之,实如法而一,得日数者,即设差不盈不朒之正数。以二马初日所行里乘十五日,为一十五日平行数。求初末益疾减迟之数者,并一与十四,以十四乘而半之,为中平之积。又令益疾减迟里数乘之,各为减益之中平里。故各减益平行数,得一十五日定行里。若求后一日,以十六日之定行里数乘日分子,如日分母而一,各得日分子之定行里数。故各并十五日定行里,即得。其驽马奇半里者,法为全里之分,故破半里为半法,以增残分,即合所问也。〕今有人持钱之蜀贾,利十,三。初返归一万四千,次返归一万三千,次返归一万二千,次返归一万一千,后返归一万。凡五返归钱,本利俱尽。问本持钱及利各几何?答曰:本三万四百六十八钱三十七万一千二百九十三分钱之八万四千八百七十六。利二万九千五百三十一钱三十七万一千二百九十三分钱之二十八万六千四百一十七。
术曰:假令本钱三万,不足一千七百三十八钱半;令之四万,多三万五千三百九十钱八分。
〔按:假令本钱三万,并利为三万九千;除初返归留,余,加利为三万二千五百;除二返归留,余,又加利为二万五千三百五十;除第三返归留,余,又加利为一万七千三百五十五;除第四返归留,余,又加利为八千二百六十一钱半;除第五返归留,合一万钱,不足一千七百三十八钱半。若使本钱四万,并利为五万二千;除初返归留,余,加利为四万九千四百;除第二返归留,余,又加利为四万七千三百二十;除第三返归留,余,又加利为四万五千九百一十六;除第四返归留,余,又加利为四万五千三百九十钱八分;除第五返归留,合一万,余三万五千三百九十钱八分,故曰多。
又术:置后返归一万,以十乘之,十三而一,即后所持之本。加一万一千,又以十乘之,十三而一,即第四返之本。加一万二千,又以十乘之,十三而一,即第三返之本。加一万三千,又以十乘之,十三而一,即第二返之本。加一万四千,又以十乘之,十三而一,即初持之本。并五返之钱以减之,即利也。〕今有垣厚五尺,两鼠对穿。大鼠日一尺,小鼠亦日一尺。大鼠日自倍,小鼠日自半。问几何日相逢?各穿几何?答曰:二日一十七分日之二。大鼠穿三尺四寸十七分寸之一十二,小鼠穿一尺五寸十七分寸之五。
术曰:假令二日,不足五寸;令之三日,有余三尺七寸半。
〔大鼠日倍,二日合穿三尺;小鼠日自半,合穿一尺五寸;并大鼠所穿,合四尺五寸。课于垣厚五尺,是为不足五寸。令之三日,大鼠穿得七尺,小鼠穿得一尺七寸半。并之,以减垣厚五尺,有余三尺七寸半。以盈不足术求之,即得。
以后一日所穿乘日分子,如日分母而一,即各得日分子之中所穿。故各增二日定穿,即合所问也。〕
《卷八》
《卷八》作者:张苍
○方程(以御错糅正负)今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗。问上、中、下禾实一秉各几何?答曰:上禾一秉九斗四分斗之一。中禾一秉四斗四分斗之一。下禾一秉二斗四分斗之三。
方程〔程,课程也。群物总杂,各列有数,总言其实。令每行为率。二物者再程,三物者三程,皆如物数程之。并列为行,故谓之方程。行之左右无所同存,且为有所据而言耳。此都术也,以空言难晓,故特系之禾以决之。又列中、左行如右行也。〕术曰:置上禾三秉,中禾二秉,下禾一秉,实三十九斗于右方。中、左禾列如右方。以右行上禾遍乘中行,而以直除。
〔为术之意,令少行减多行,反复相减,则头位必先尽。上无一位,则此行亦阙一物矣。然而举率以相减,不害余数之课也。若消去头位,则下去一物之实。
如是叠令左右行相减,审其正负,则可得而知。先令右行上禾乘中行,为齐同之意。为齐同者,谓中行直减右行也。从简易虽不言齐同,以齐同之意观之,其义然矣。〕又乘其次,亦以直除。
〔复去左行首。〕然以中行中禾不尽者遍乘左行,而以直除。
〔亦令两行相去行之中禾也。〕左方下禾不尽者,上为法,下为实。实即下禾之实。
〔上、中禾皆去,故余数是下禾实,非但一秉。欲约众秉之实,当以禾秉数为法。列此,以下禾之秉数乘两行,以直除,则下禾之位皆决矣。各以其余一位之秉除其下实。即计数矣用算繁而不省。所以别为法,约也。然犹不如自用其旧。
广异法也。〕求中禾,以法乘中行下实,而除下禾之实。
〔此谓中两禾实,下禾一秉实数先见,将中秉求中禾,其列实以减下实。而左方下禾虽去一,以法为母,于率不通。故先以法乘,其通而同之。俱令法为母,而除下禾实。以下禾先见之实令乘下禾秉数,即得下禾一位之列实。减于下实,则其数是中禾之实也。〕余,如中禾秉数而一,即中禾之实。
〔余,中禾一位之实也。故以一位秉数约之,乃得一秉之实也。〕求上禾,亦以法乘右行下实,而除下禾、中禾之实。
〔此右行三禾共实,合三位之实。故以二位秉数约之,乃得一秉之实。今中下禾之实其数并见,令乘右行之禾秉以减之。故亦如前各求列实,以减下实也。〕余,如上禾秉数而一,即上禾之实。实皆如法,各得一斗。
〔三实同用,不满法者,以法命之。母、实皆当约之。〕今有上禾七秉,损实一斗,益之下禾二秉,而实一十斗;下禾八秉,益实一斗,与上禾二秉,而实一十斗。问上、下禾实一秉各几何?答曰:上禾一秉实一斗五十二分斗之一十八。下禾一秉实五十二分斗之四十一。
术曰:如方程。损之曰益,益之曰损。
〔问者之辞虽?今按:实云上禾七秉,下禾二秉,实一十一斗;上禾二秉,下禾八秉,实九斗也。“损之曰益”,言损一斗,余当一十斗;今欲全其实,当加所损也。“益之曰损”,言益实以一斗,乃满一十斗;今欲知本实,当减所加,即得也。〕损实一斗者,其实过一十斗也;益实一斗者,其实不满一十斗也。
〔重谕损益数者,各以损益之数损益之也。〕今有上禾二秉,中禾三秉,下禾四秉,实皆不满斗。上取中、中取下、下取上各一秉而实满斗。问上、中、下禾实一秉各几何?答曰上禾一秉实二十五分斗之九。中禾一秉实二十五分斗之七。下禾一秉实二十五分斗之四。
术曰:如方程。各置所取。
〔置上禾二秉为右行之上,中禾三秉为中行之中,下禾四秉为左行之下,所取一秉及实一斗各从其位。诸行相借取之物皆依此例。〕以正负术入之。
正负术曰:〔今两算得失相反,要令正负以名之。正算赤,负算黑,否则以邪正为异。
方程自有赤、黑相取,法、实数相推求之术。而其并减之势不得广通,故使赤、黑相消夺之,于算或减或益。同行异位殊为二品,各有并、减之差见于下焉。著此二条,特系之禾以成此二条之意。故赤、黑相杂足以定上下之程,减、益虽殊足以通左右之数,差、实虽分足以应同异之率。然则其正无入以负之,负无入以正之,其率不妄也。〕同名相除,〔此谓以赤除赤,以黑除黑,行求相减者,为去头位也。然则头位同名者,当用此条,头位异名者,当用下条。〕异名相益,〔益行减行,当各以其类矣。其异名者,非其类也。非其类者,犹无对也,非所得减也。故赤用黑对则除,黑;无对则除,黑;黑用赤对则除,赤;无对则除,赤;赤黑并于本数。此为相益之,皆所以为消夺。消夺之与减益成一实也。
术本取要,必除行首。至于他位,不嫌多少,故或令相减,或令相并,理无同异而一也。〕正无入负之,负无入正之。
〔无入,为无对也。无所得减,则使消夺者居位也。其当以列实或减下实,而行中正负杂者亦用此条。此条者,同名减实,异名益实,正无入负之,负无入正之也。〕其异名相除,同名相益,正无入正之,负无入负之。
〔此条异名相除为例,故亦与上条互取。凡正负所以记其同异,使二品互相取而已矣。言负者未必负于少,言正者未必正于多。故每一行之中虽复赤黑异算无伤。然则可得使头位常相与异名。此条之实兼通矣,遂以二条反覆一率。观其每与上下互相取位,则随算而言耳,犹一术也。又,本设诸行,欲因成数以相去耳。故其多少无限,令上下相命而已。若以正负相减,如数有旧增法者,每行可均之,不但数物左右之也。〕今有上禾五秉,损实一斗一升,当下禾七秉;上禾七秉,损实二斗五升,当下禾五秉。问上、下禾实一秉各几何?答曰:上禾一秉五升。下禾一秉二升。
术曰:如方程。置上禾五秉正,下禾七秉负,损实一斗一升正。
〔言上禾五秉之实多,减其一斗一升,余,是与下禾七秉相当数也。故互其算,令相折除,以一斗一升为差。为差者,上禾之余实也。〕次置上禾七秉正,下禾五秉负,损实二斗五升正。以正负术入之。
〔按:正负之术,本设列行,物程之数不限多少,必令与实上下相次,而以每行各自为率。然而或减或益,同行异位,殊为二品,各自并、减,之差见于下也。〕今有上禾六秉,损实一斗八升,当下禾一十秉;下禾一十五秉,损实五升,当上禾五秉。问上、下禾实一秉各几何?答曰:上禾一秉实八升。下禾一秉实三升。
术曰:如方程。置上禾六秉正,下禾一十秉负,损实一斗八升正。次,上禾五秉负,下禾一十五秉正,损实五升正。以正负术入之。
〔言上禾六秉之实多,减损其一斗八升,余是与下禾十秉相当之数。故亦互其算,而以一斗八升为差实。差实者,上禾之余实。〕今有上禾三秉,益实六斗,当下禾一十秉;下禾五秉,益实一斗,当上禾二秉。问上、下禾实一秉各几何?答曰:上禾一秉实八斗。下禾一秉实三斗。
术曰:如方程。置上禾三秉正,下禾一十秉负,益实六斗负。次置上禾二秉负,下禾五秉正,益实一斗负。以正负术入之。
〔言上禾三秉之实少,益其六斗,然后于下禾十秉相当也。故亦互其算,而以六斗为差实。差实者,下禾之余实。〕今有牛五,羊二,直金十两;牛二,羊五,直金八两。问牛、羊各直金几何?答曰:牛一直金一两二十一分两之一十三。羊一直金二十一分两之二十。
术曰:如方程。
〔假令为同齐,头位为牛,当相乘。右行定,更置牛十,羊四,直金二十两;左行:牛十,羊二十五,直金四十两。牛数等同,金多二十两者,羊差二十一使之然也。以少行减多行,则牛数尽,惟羊与直金之数见,可得而知也。以小推大,虽四五行不异也。〕今有卖牛二,羊五,以买一十三豕,有余钱一千;卖牛三,豕三,以买九羊,钱适足;卖六羊,八豕,以买五牛,钱不足六百。问牛、羊、豕价各几何?答曰牛价一千二百。羊价五百。豕价三百。
术曰:如方程。置牛二,羊五正,豕一十三负,余钱数正;次,牛三正,羊九负,豕三正;次五牛负,六羊正,八豕正,不足钱负。以正负术入之。
〔此中行买、卖相折,钱适足,故但互买卖算而已。故下无钱直也。设欲以此行如方程法,先令二牛遍乘中行,而以右行直除之。是故终于下实虚缺矣。故注曰正无实负,负无实正,方为类也。方将以别实加适足之数与实物作实。
盈不足章“黄金白银”与此相当。“假令黄金九,白银一十一,称之重适等。
交易其一,金轻十三两。问金、银一枚各重几何?”与此同。〕今有五雀六燕,集称之衡,雀俱重,燕俱轻。一雀一燕交而处,衡适平。并雀、燕重一斤。问雀、燕一枚各重几何?答曰:雀重一两一十九分两之一十三。
燕重一两一十九分两之五。
术曰:如方程。交易质之,各重八两。
〔此四雀一燕与一雀五燕衡适平,并重一斤,故各八两。列两行程数。左行头位其数有一者,令右行遍除。亦可令于左行而取其法、实于左。左行数多,以右行取其数。左头位减尽,中、下位算当燕与实。右行不动。左上空,中法,下实,即每枚当重宜可知也。按:此四雀一燕与一雀五燕其重等,是三雀、四燕重相当。雀率重四,燕率重三也。诸再程之率皆可异术求也,即其数也。〕今有甲、乙二人持钱不知其数。甲得乙半而钱五十,乙得甲太半而亦钱五十。
问甲、乙持钱各几何?答曰:甲持三十七钱半。乙持二十五钱。
术曰:如方程。损益之。
〔此问者言一甲,半乙而五十;太半甲,一乙亦五十也。各以分母乘其全,内子。行定:二甲,一乙而钱一百;二甲,三乙而钱一百五十。于是乃如方程。
诸物有分者放此。〕今有二马,一牛,价过一万,如半马之价;一马,二牛,价不满一万,如半牛之价。问牛、马价各几何?答曰:马价五千四百五十四钱一十一分钱之六。牛价一千八百一十八钱一十一分钱之二。
术曰:如方程。损益之。
〔此一马半与一牛价直一万也,二牛半与一马亦直一万也。一马半与一牛直钱一万,通分内子,右行为三马,二牛,直钱二万。二牛半与一马直钱一万,通分内子,左行为二马,五牛,直钱二万也。〕今有武马一匹,中马二匹,下马三匹,皆载四十石至阪,皆不能上。武马借中马一匹,中马借下马一匹,下马借武马一匹,乃皆上。问武、中、下马一匹各力引几何?答曰:武马一匹力引二十二石七分石之六。中马一匹力引一十七石七分石之一。下马一匹力引五石七分石之五。
术曰:如方程。各置所借,以正负术入之。
今有五家共井,甲二绠不足,如乙一绠。乙三绠不足,以丙一绠;丙四绠不足,以丁一绠;丁五绠不足,以戊一绠;戊六绠不足,以甲一绠。如各得所不足一绠,皆逮。问井深、绠长各几何?答曰:井深七丈二尺一寸。甲绠长二丈六尺五寸。乙绠长一丈九尺一寸。丙绠长一丈四尺八寸。丁绠长一丈二尺九寸。戊绠长七尺六寸。
术曰:如方程。以正负术入之。
〔此率初如方程为之,名各一逮井。其后,法得七百二十一,实七十六,是为七百二十一绠而七十六逮井,并用逮之数。以法除实者,而戊一绠逮井之数定,逮七百二十一分之七十六。是故七百二十一为井深,七十六为戊绠之长,举率以言之。〕今有白禾二步,青禾三步,黄禾四步,黑禾五步,实各不满斗。白取青、黄,青取黄、黑,黄取黑、白,黑取白、青,各一步,而实满斗。问白、青、黄、黑禾实一步各几何?答曰:白禾一步实一百一十一分斗之三十三。青禾一步实一百一十一分斗之二十八。黄禾一步实一百一十一分斗之一十七。黑禾一步实一百一十一分斗之一十。
术曰:如方程。各置所取,以正负术入之。
今有甲禾二秉,乙禾三秉,丙禾四秉,重皆过于石。甲二重如乙一,乙三重如丙一,丙四重如甲一。问甲、乙、丙禾一秉各重几何?答曰:甲禾一秉重二十三分石之一十七。乙禾一秉重二十三分石之一十一。丙禾一秉重二十三分石之一十。
术曰:如方程。置重过于石之物为负。
〔此问者言甲禾二秉之重过于一石也。其过者何云?如乙一秉重矣。互其算,令相折除,而一以石为之差实。差实者,如甲禾余实。故置算相与同也。〕以正负术入之。
〔此入,头位异名相除者,正无入正之,负无入负之也。〕今有令一人,吏五人,从者一十人,食鸡一十;令一十人,吏一人,从者五人,食鸡八;令五人,吏一十人,从者一人,食鸡六。问令、吏、从者食鸡各几何?答曰令一人食一百二十二分鸡之四十五。吏一人食一百二十二分鸡之四十一。
从者一人食一百二十二分鸡之九十七。
术曰:如方程。以正负术入之。
今有五羊,四犬,三鸡,二兔,直钱一千四百九十六;四羊,二犬,六鸡,三兔,直钱一千一百七十五;三羊,一犬,七鸡,五兔,直钱九百五十八;二羊,三犬,五鸡,一兔,直钱八百六十一。问羊、犬、鸡、兔价各几何?答曰:羊价一百七十七。犬价一百二十一。鸡价二十三。兔价二十九。
术曰:如方程。以正负术入之。
今有麻九斗,麦七斗,菽三斗,荅二斗,黍五斗,直钱一百四十;麻七斗,麦六斗,菽四斗,荅五斗,黍三斗,直钱一百二十八;麻三斗,麦五斗,菽七斗,荅六斗,黍四斗,直钱一百一十六;麻二斗,麦五斗,菽三斗,荅九斗,黍四斗,直钱一百一十二;麻一斗,麦三斗,菽二斗,荅八斗,黍五斗,直钱九十五。问一斗直几何?荅曰:麻一斗七钱。麦一斗四钱。菽一斗三钱。荅一斗五钱。黍一斗六钱。
术曰:如方程。以正负术入之。
〔此麻麦与均输、少广之章重衰、积分皆为大事。其拙于精理徒按本术者,或用算而布毡,方好烦而喜误,曾不知其非,反欲以多为贵。故其算也,莫不暗于设通而专于一端。至于此类,苟务其成,然或失之,不可谓要约。更有异术者,庖丁解牛,游刃理间,故能历久其刃如新。夫数,犹刃也,易简用之则动中庖丁之理。故能和神爱刃,速而寡尤。凡九章为大事,按法皆不尽一百算也。虽布算不多,然足以算多。世人多以方程为难,或尽布算之象在缀正负而已,未暇以论其设动无方,斯胶柱调瑟之类。聊复恢演,为作新术,著之于此,将亦启导疑意。
网罗道精,岂传之空言?记其施用之例,著策之数,每举一隅焉。
方程新术曰:以正负术入之。令左、右相减,先去下实,又转去物位,则其求一行二物正负相借者,是其相当之率。又令二物与他行互相去取,转其二物相借之数,即皆相当之率也。各据二物相当之率,对易其数,即各当之率也。更置成行及其下实,各以其物本率今有之,求其所同。并,以为法。其当相并而行中正负杂者,同名相从,异名相消,余,以为法。以下置为实。实如法,即合所问也。一物各以本率今有之,即皆合所问也。率不通者,齐之。
其一术曰:置群物通率为列衰。更置成行群物之数,各以其率乘之,并,以为法。其当相并而行中正负杂者,同名相从,异名相消,余为法。以成行下实乘列衰,各自为实。实如法而一,即得。
以旧术为之。凡应置五行。今欲要约,先置第三行,减以第四行,又减第五行;次置第二行,以第二行减第一行,又减第四行。去其头位;余,可半;次置右行及第二行。去其头位;次以右行去第四行头位,次以左行去第二行头位,次以第五行去第一行头位;次以第二行去第四行头位;余,可半;以右行去第二行头位,以第二行去第四行头位。余,约之为法、实。实如法而一,得六,即有黍价。以法治第二行,得荅价,右行得菽价,左行得麦价,第三行麻价。如此凡用七十七算。
以新术为此。先以第四行减第三行;次以第三行去右行及第二行、第四行下位,又以减左行下位,不足减乃止;次以左行减第三行下位,次以第三行去左行下位。讫,废去第三行。次以第四行去左行下位,又以减右行下位;次以右行去第二行及第四行下位;次以第二行减第四行及左行头位;次以第四行减左行菽位,不足减乃止;次以左行减第二行头位,余,可再半;次以第四行去左行及第二行头位,次以第二行去左行头位,余,约之,上得五,下得三,是菽五当荅;次以左行去第二行菽位,又以减第四行及右行菽位,不足减乃止;次以右行减第二行头位,不足减乃止;次以第二行去右行头位,次以左行去右行头位;余,上得六,下得五,是为荅六当黍五;次以左行去右行荅位,余,约之,上为二,下为一;次以右行去第二行下位,以第二行去第四行下位,又以减左行下位;次,左行去第二行下位,余,上得三,下得四,是为麦三当菽四;次以第二行减第四行下位;次以第四行去第二行下位;余,上得四,下得七,是为麻四当麦七。是为相当之率举矣。据麻四当麦七,即麻价率七而麦价率四;又麦三当菽四,即为麦价率四而菽价率三;又菽五当荅三,即为菽价率三而荅价率五;又荅六当黍五,即为荅价率五而黍价率六;而率通矣。更置第三行,以第四行减之,余有麻一斗,菽四斗正,荅三斗负,下实四正。求其同为麻之数,以菽率三、荅率五各乘其斗数,如麻率七而一,菽得一斗七分斗之五正,荅得二斗七分斗之一负。则菽、荅化为麻。以并之,令同名相从,异名相消,余得定麻七分斗之四,以为法。置四为实,而分母乘之,实得二十八,而分子化为法矣以法除得七,即麻一斗之价。置麦率四、菽率三、荅率五、黍率( 九章算术 http://www.xlawen.org/kan/485/ )